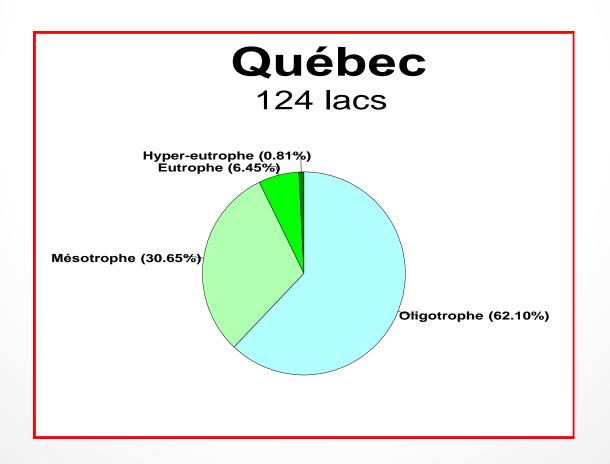


UQÀM

des Nations Unies • en Changements la science et la culture . à l'échelle du globe

Organisation • Chaire UNESCO pour l'éducation, · environnementaux Université du Québec à Montréal (Canada)

Quelques réflexions sur les projets de restauration des lacs


Yves Prairie UQÀM

Qu'est-ce qu'on entend par « restauration »

- Remettre dans son état original?
 - o Quel était-il?
- Renverser/éliminer les dommages causés par un événement exceptionnel
 - o Déversement accidentel
- Récupérer un usage particulier perdu?
 - o Baignade, pêcherie,...
- Simplement améliorer la situation?
 - o Prévention des blooms de cyanobactéries potentiellement toxiques

Eutrophisation

Sur-fertilisation par le phosphore

Le « problème » de l'eutrophisation

Il faut simplement réduire les sources en phosphore au lac!

Les projets de restauration

C'était l'été 2007...

Projet du lac Waterloo

Expérimentations dans le lac pour réduire la charge interne de phosphore

Suivi

Utilisation de lentilles d'eau comme capteur du phosphore présent dans l'eau

- Qualité des sédiments (enclos/témoin)
- Mesures de la biomasse produite par les plantes
- Qualité de l'eau
- Détermination de la quantité de nutriments prélevée par les plantes

Pompage hydraulique des sédiments et gestion dans des géotubes

- Qualité de l'eau (enclos/témoin)
- Qualité des sédiments restants en place
- Suivi de l'eau décantée des géotubes avant son retour au lac

Environnement, Faune et Parcs

Québec

Projet du lac Brome

Interventions en amont du lac pour réduire les charges externes de phosphore avant qu'elles n'atteignent le lac

Réduction du

ruissellement et de l'**érosion** des sols

· Seuils (fossés)

Captation des particules de sol et du phosphore

- Fosses à sédiments
- Bassins de sédimentation
- Marais filtrant

Québec

14

Projet du lac Saint-Augustin

Expérimentation de deux solutions pour réduire la charge interne de P

Floculation et recouvrement de calcite

En enclos:

- Floculant seul
- •Floculant + Calcite
- Calcite seul
- Témoin

Pompage des sédiments de surface

En laboratoire:

étude du relargage

Dans le lac:

vérification du relargage (dialyseurs)

En enclos:

•pompage des sédiments

Projet du lac à l'Anguille

Expérimentations pour réduire la charge externe et la charge interne de phosphore

Marais filtrant

(capter le phosphore dans le tributaire)

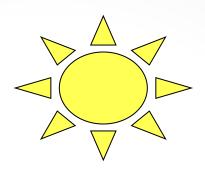
• Charges de phosphore amont/aval du marais

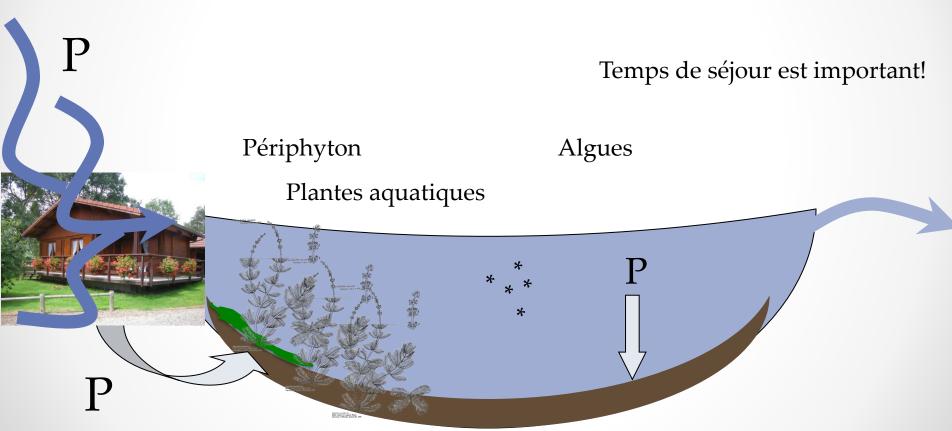
Îlot flottant

(pomper le phosphore dans le lac)

- Production de biomasse
- Détermination de la quantité de P prélevée par m² d'île flottante

Réduction des apports en phosphore


- Captation avant d'atteindre le lac
 - marais filtrants, fosses à sédimentation, réduction de l'érosion
- Captation dans le lac
 - Îlots flottants, lentilles d'eau
- Réduction de la charge interne
 - Recouvrement des sédiments
 - dragage des sédiments


Règle 3: Bien comprendre les sources de phosphore au lac avant d'entreprendre des actions!

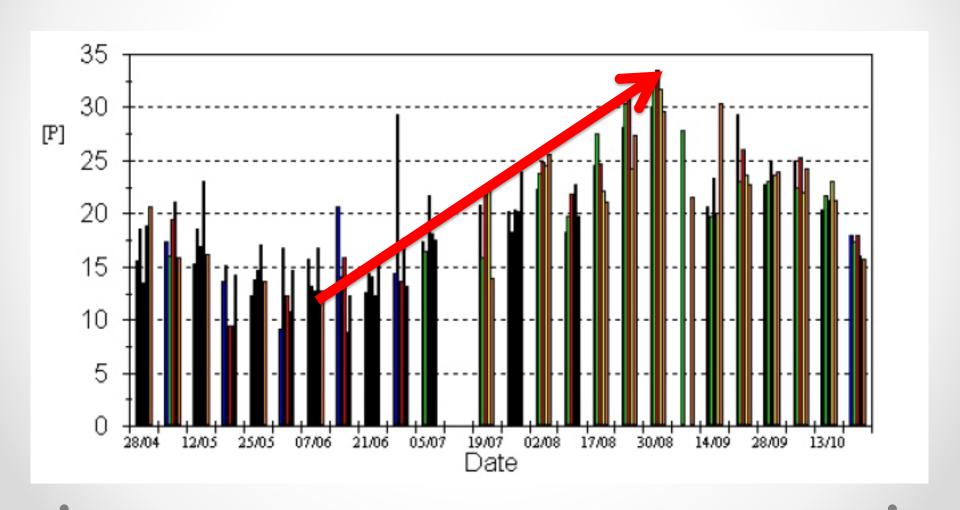
Bien identifier la source du problème

- Pollution diffuse et chronique
- Pollution ponctuelle et/ou circonscrite dans le temps

Circonstances naturelles

Le cas du L. Brome

Superficie: 14 km²


Prof. max.: 12 m

Prof. thermocline: 8m

>70% de sa surface dans l'épilimnion

Projet-pilote visant à réduire les apports externes de P

L. Brome

Le cas du L. Brome...

Apports de phosphore

Sources externes:

apports tributaires:
 apports atmosphériques
 fosses septiques:
 33 kg²

753 kg

Sources internes:

relargage P (séd. prof.)
 relargage P (séd. peu prof)
 1382 kg³
 1629 kg³

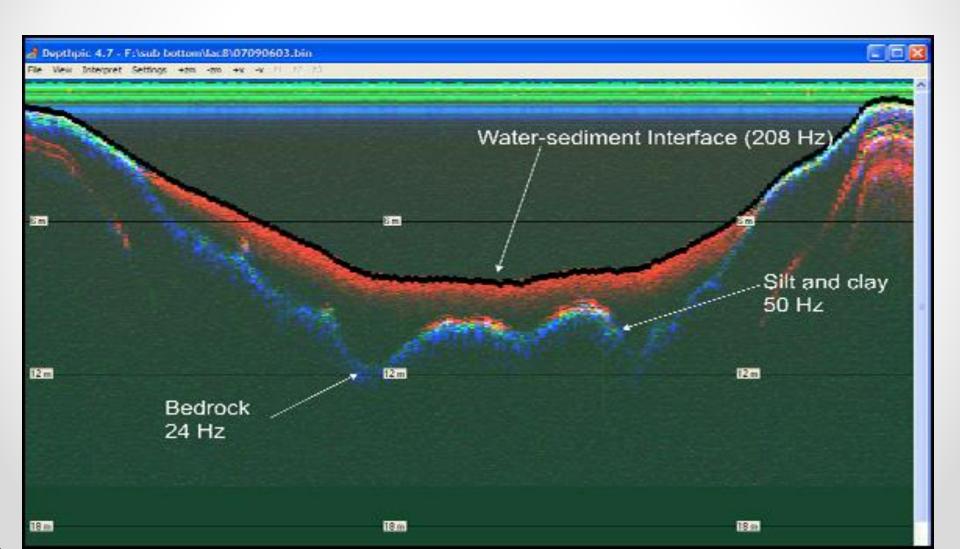
APPORTS TOTAUX: 3764 kg

Pertes

- Exutoire 398 kg - Changement de masse 0 kg⁴ - Sédimentation (3366) kg⁵

Règle 2: N'intervenir dans le lac qu'en dernier recours

Bien comprendre les processus écologiques impliqués!


Réduction des apports en phosphore

- Captation avant d'atteindre le lac
 - marais filtrants, fosses à sédimentation, réduction de l'érosion
- Captation dans le lac
 - Îlots flottants, lentilles d'eau
- Réduction de la charge interne
 - Recouvrement des sédiments
 - dragage des sédiments

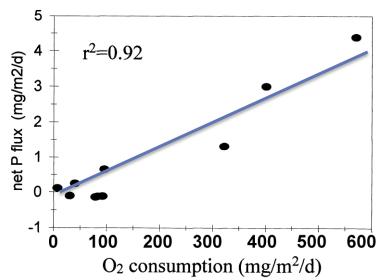
Sédimentologie lacustre

- Sédiments sont composés de particules fines provenant des organismes morts (algues, zooplancton), de matière organique dissoute qui se coagule, matière provenant du bassin versant par érosion
- Accumulation varie entre 0.2 et 2mm/an
- Haute teneur en matière organique (entre 20 et 60%)
- Très haute teneur en P (comparativement à l'eau)

Sédimentation

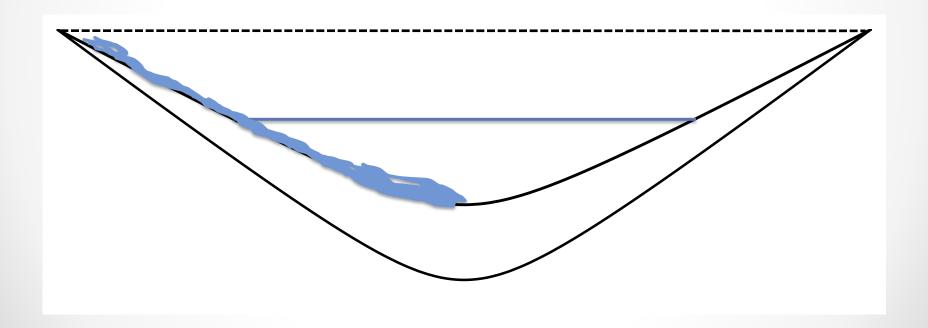
Les sédiments de tous les lacs sont très riches en phosphore

Table 1. Main chemical and physical characteristics of the sediments in the 10 selected lakes.


	Selby	Magog	Manitou	Maskinongé	Connelly	Croche	Dufresne	Écho	Bromont	Dupuis
LOI (%)	10.0±0.5	18.2±0.1	30.4±0.7	17.0±0.8	23.4±1.7	43.4±1.3	31.5±0.9	48.2±1.0	12.0±0.6	38.0±1.2
ETS act. (mg INT-F/g)	1.4 ± 0.3	4.0 ± 1.0	5.2±1.4	4.2±1.0	5.1 ± 0.4	8.2 ± 0.3	9.2±1.6	16.2±2.0	1.3 ± 0.3	5.5 ± 1.6
Total Fe (mg/g)	23.8±0.9	27.2±1.8	15.1±3.1	22.4±1.0	17.4±2.5	6.7 ± 0.6	11.7±0.9	9.8 ± 1.7	37.9±1.7	18.4±2.0
Reducible Fe (mg/g)	7.9 ± 1.0	23.8±11.7	14.5±4.0	11.2±2.8	11.3±2.5	4.4 ± 0.7	6.7±1.8	5.8 ± 3.2	16.9±1.9	16.8±1.6
Ferrous Fe (mg/g)	0.21±0.06	0.33±0.07	0.37±0.09	0.33±0.08	0.20±0.07	0.19±0.02	0.15±0.05	0.28±0.19	0.28±0.08	0.45±0.11
Total P (mg/g)	1.6 ± 0.1	1.4 ± 0.4	2.9±0.2	2.0 ± 0.1	2.3±0.2	1.5 ± 0.1	1.8 ± 0.1	2.6 ± 0.2	1.8 ± 0.1	2.4 ± 0.2
Fe/P ratio	14.9	12.3	5.2	11.2	7.6	4.5	6.5	3.8	21.1	7.7
Organic-P (mg/g)	359±288	540±271	1136±844	185±43	292±189	1162±171	660±69	1683±528	232±166	1083±243
NH4C1-P (mg/g)	3±2	13±5	37±24	23±26	8±4	58±20	77±22	83±32	1±0.5	31±15
NaOH-P (mg/g)	676±48	631±54	1246±325	755±84	1211±322	330±113	724±83	384±251	1089±223	1186±564
HC1-P (mg/g)	330±96	307±102	453±113	622±99	294±74	166±32	233±78	125±30	673±188	162±56
Refractory-P (mg/g)	226±44	42±25	123±80	88±22	277±130	22±4	158±41	13±9	345 ± 62	69±35
Sand (%)	57	22	33	39	45	39	27	45	40	41
Silt (%)	22	61	50	50	34	43	58	44	28	36
Clay (%)	21	17	17	11	21	18	15	11	32	23

Relargage de P des sédiments

 Est-ce que c'est le relargage de P des sédiments qui cause l'eutrophisation?

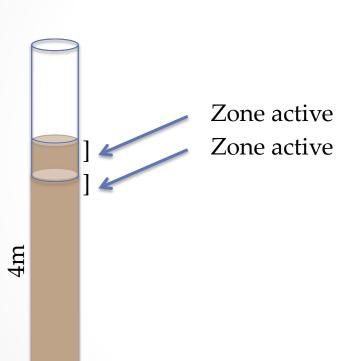

 Est-ce plutôt l'eutrophisation qui cause ce relargage?

Que peut-on faire?

- Recouvrement des sédiments offensants
- Dragage des sédiments

Recouvrement des sédiments par membrane ou autres matériaux

Recouvrement?


- La zone la plus active est généralement la zone la moins stable
- Changement de la potentiel redox qui contrôle largement les processus biogéochimiques
- Introduction de matériaux actifs est toujours périlleuse
 Ex. Lanthane (Phoslock)
- L'effet est généralement temporaire
- Zone (sédiments) littoral est une source importante de nourriture pour les poissons

Dragage des sédiments

Dragage des sédiments

· L. Waterloo

Réduction des apports en phosphore

- Captation avant d'atteindre le lac
 - marais filtrants, fosses à sédimentation, réduction de l'érosion
- Captation de P dans le lac
 - Îlots flottants, lentilles d'eau
- Réduction de la charge interne
 - Recouvrement des sédiments
 - dragage des sédiments

Ponction de P par des plantes (ex. îlots flottants, lentilles d'eau)

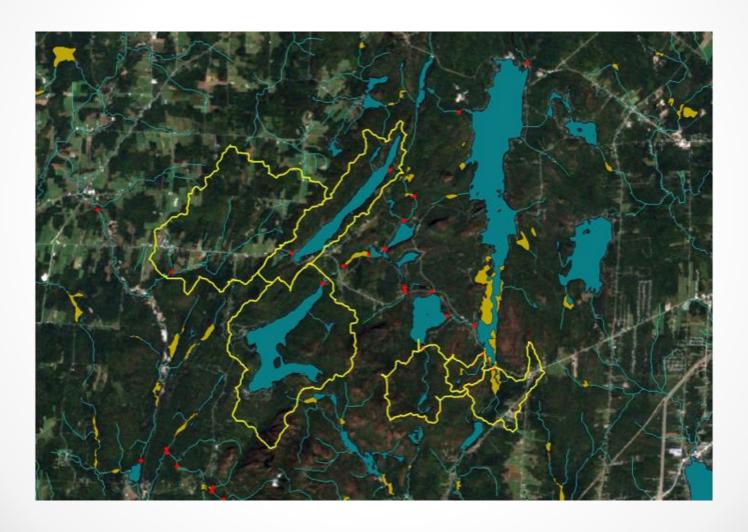
- Les algues sont les organismes photosynthétiques les plus adaptés à extirper le peu de phosphore qu'il y a dans l'eau
- La capacité des îlots flottants à en extirper diminue à mesure que les teneurs baissent, i.e. ces plantes deviennent elles-mêmes limitées par le phosphore
- Les résultats jusqu'à maintenant montrent que le potentiel d'une telle approche à grande échelle est limitée (succès des expériences-pilote mitigés)

Règle 1: Agir le plus possible en amont du lac

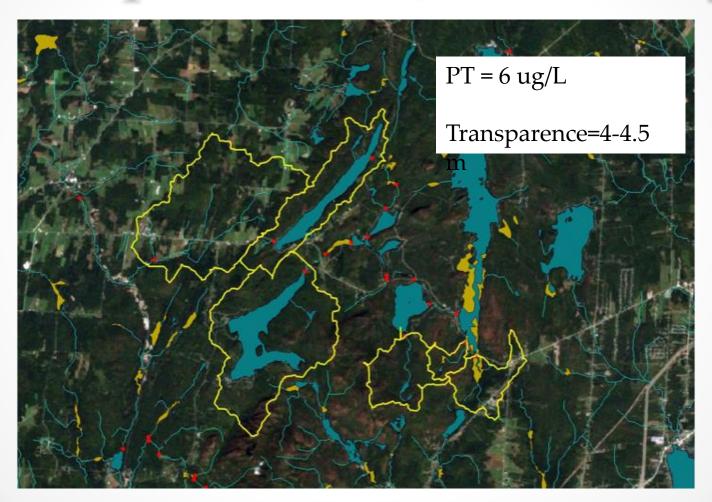
Réduction des apports en phosphore

- Captation avant d'atteindre le lac
 - marais filtrants, fosses à sédimentation, réduction de l'érosion
- Captation dans le lac
 - Îlots flottants, lentilles d'eau
- Réduction de la charge interne
 - Recouvrement des sédiments
 - dragage des sédiments

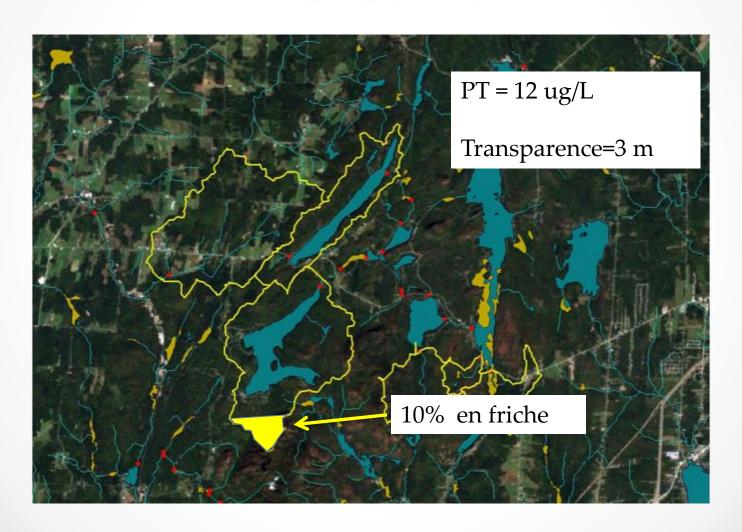
Apports de phosphore et utilisation du territoire

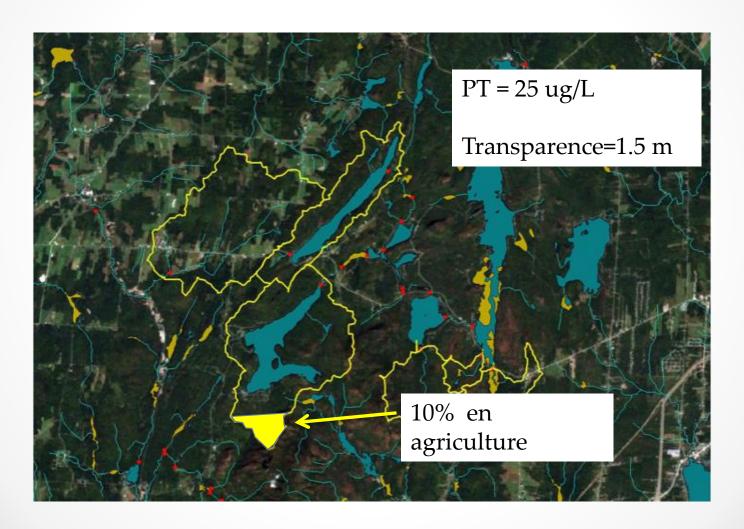

Exp. Pakg Pakm-2an-1)

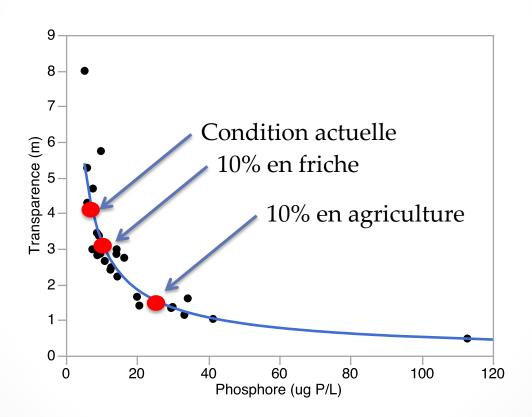
Forêt


Friche/Pâturage 50

Agriculture 100-400


Le lac et son bassin versant

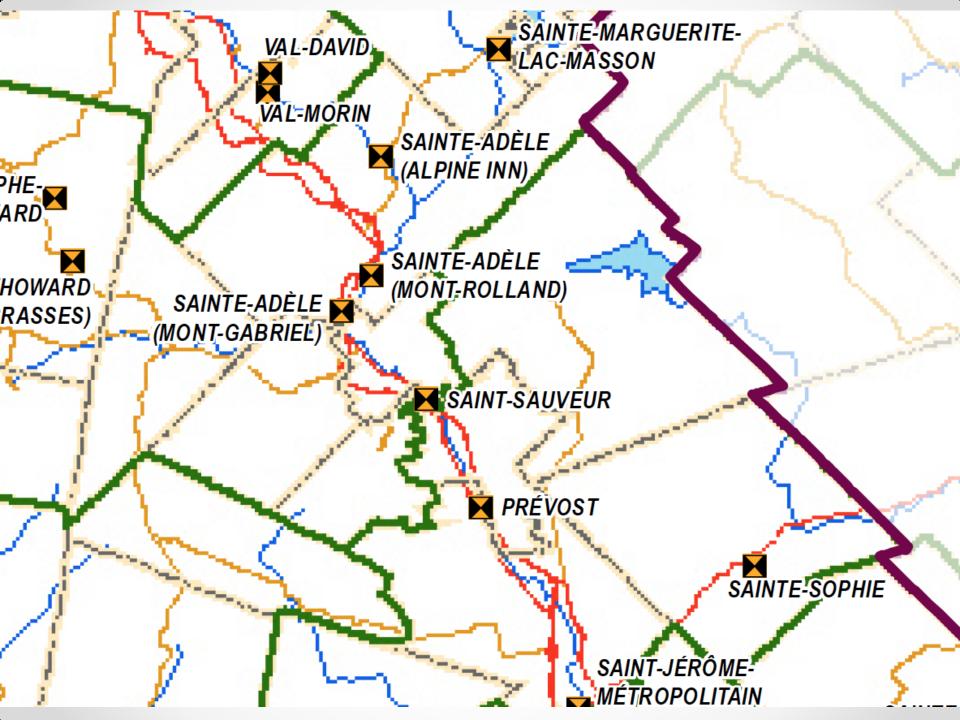

Exemple fictif (L. Stukely)


Le lac et son bassin versant

Le lac et son bassin versant

Exemple (L. Stukely)

L'incohérence de notre propos collectif


- Densité de population des petites localités
 - o 30-60 hab/km²
- Rejet en phosphore par habitant
 - o 0.8 kg P/an
- 24-48 kg P km⁻² an⁻¹

Exp. Pakg Pakm-2an-1)

Forêt 5

Friche/Pâturage 50

Agriculture 100-400

Conclusions

- Le problème de l'eutrophisation est scientifiquement simple mais les solutions comportent des enjeux qui débordent de la science
- Les actions directes au lac doivent être évaluées à la lumière d'une compréhension approfondie des mécanismes écologiques
- L'eutrophisation dans les milieux agricoles doivent faire l'objet d'une meilleure conciliation entre les impératifs agricoles et les usages des plans d'eau
- Cet arrimage aura nécessairement un coût pour la société